Photocatalytic Degradation of Congo Red with Sol-Gel Immobilized TiO₂ Thin Layers on the Inner Surface of a Glass Tube Column

Authors

  • Najib Nafis Universitas Andalas
  • Hilda Sartika Universitas Andalas
  • Mutia Rahmi Universitas Andalas

DOI:

https://doi.org/10.70076/cj.v1i1.29

Keywords:

Congo Red, Degradation, Photocatalytic, Immobilization, TiO2

Abstract

The photocatalytic degradation of Congo Red in water was conducted using an immobilized TiO₂ film inside a glass column tube (IWGCT-TiO₂). The TiO₂ film was prepared using titanium tetraisopropoxide (TTIP) via the sol-gel method, then calcined at 400°C. Characterization by UV-Vis, XRD, and SEM revealed an anatase phase with an absorption peak at 390 nm and a diffraction peak at 2θ = 25°. The crystallite size was approximately 8.99 nm, and the substrate was well-covered. The IWGCT-TiO₂ was placed in a batch reactor equipped with a 22-watt black UV lamp and an aerator to enhance oxygen transfer. Under UV irradiation, TiO₂ generates electrons and holes that degrade organic molecules. Optimal degradation occurred with eight TiO₂ coatings, achieving nearly 99% removal of 50 ppm Congo Red after 240 minutes. Langmuir-Hinshelwood kinetics yielded a reaction rate constant of k_r = 1.311 ppm/min and an adsorption constant of K = 0.043/ppm. The quantum yield was approximately 77% over 11.5 hours. During this time, intermediate organics such as oxalic acid appeared before full mineralization. Control tests with UV light alone or TiO₂ without light showed no significant degradation, confirming the necessity of both light and the catalyst for effective photocatalysis.

References

Sugiarto, Dasar-dasar pengolahan Air Limbah, UI Press, Jakarta, (1987).

Weavers, L.K., N. Malmstadt, and M.R. Hoffmann, Kinetics and Mechanism of Pentachlorophenol of Degradation by Sonication, Ozonation, and Sonolytic Ozonation, Environ. Sci. Technol. 34, (2000),1280-1285.

Ruppert, G., and R. Bauer, UV-O3, UV-H2O2, UV-TiO2 and The Photo- fenton Reaction Comparison of advanced Oxidation Processes for Waste Water Treatment, Chemosphere, 28 (8), (1994),1447- 1454.

Wu. J, Xingwang F, Yongke H, Jun L, Oxidative Decomposition of Pentacholophenol in Aqueus Solution, Radiat. Phys. Chem.,54 (4), (1998), 411-415.

Getoff, N., Radiation-induced Degradation of Water Pollutans-state of Art, Radiat. Phys. Chem., 47 (4), (1996), 581-593.

Fujishima, A. dan Honda, K., Electrochemical Photolysis of Water at Semiconductor Electrode, Nature, 238, (7), (1972), 37-38.

Mills, A., Davies, R.H., dan Worsley, D., Water Purification Semiconductor Photocatalysis, Chem.Soc.Rev., (1993), 417-425.

Dingwang, C., Fengmei, L., & Ray. A.K.,External and Internal Mass Transfer Transfer Effect on Photocatalytic Degradation, Cat. Today. 66, (2001), 475-485.

Linseibigler, A.L., Guangquan L., & John T.Y., Photocatalysis on TiO2 Surface : Principles, Mechanism and Selected Results, Chem. Rev., 95, (1995), 735-758.

Stylidi, M., Dimitris I.K., & Xenophon E.V., Pathways of Solar Ligth Induced Photocatalytic Degradation of Azo Dyes in Aqueous TiO2 Suspansions, App. Catalysis B: Environmental, 40, (2003), 271- 286.

Lachhep, M., Eric P., Ammar H., Mohamed K., Eliamame E., Chantal., & Jean M.H., Photocatalytic Degradation of various Type of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Cango Red, Methylene Blue) in Water by UV- Irradiated Titania, App. Catalysis B: Environmental, 39, (2002), 75-90.

Fujishima, A., Rao, T.N, and Tryk, D.A., Titanium Dioxide Photocatalysis, Journal of Photochemistry and Photobiology C: Photochem. Rev. 1, (2000), 1-21.

Dijkstra, M.F.J., Buwalda, H., De Jong, A.W.F, Meliorien, A., Wilkenman, J.G.M & Beenackers, A.A.C.M., Experimental Comparison of Three Reactor Designs for Photocatalytic Water Purification, Chem. Engin. Sci., 56, (2001), 547-555.

Kamat, P.V., Photochemistry on Nonreactive and Reactive (Semiconductor) Surface, Chem. Rev., 93, (1993), 267-300.

Mills, A., & Le Hunte, S., An Overview of Semiconductor Photocatalysis, J. Photochem. Photobial.A: Chemistry, 108, (1997), 1-35.

Fessenden, R.J., & J.S. Fessenden, Kimia Organik, Jilid 2, Ed.3, Erlangga, Jakarta, (1986), 441-450.

Ismono, Cara-cara Optik Dalam Analisa Kimia, Dep. Kimia ITB, (1979), 3-14.

Lystyarini, A., Pengurangan Kadar Warna dengan Metode Oksidasi Fotokimia UV/H2O2, Karya Utama Sarjana Kimia FMIPA, UI, (2001)

Ismaningsih, Nn., Pengantar Kimia Zat Warna, Institut Teknologi Tekstil, bandung, (1979), 70-80.

MSDS Cango Red, Environmental Health and Savety, USA, (1999).

Cooper, W.J., Sunlight-induced photochemistry of humic substances in natural waters: major reactive species, (Suffet, I.H., and macCarty P, Eds.) in Aquatic humic substances, Influence of Fate and Treatment of Pollutants, Advances in Chemistry Series, American Chemical Society, Washington, DC, (1989).

Schwarzenbach, R.P, PM. Gschwend and D.M imboden, Environmetal Organik Chemistry, John Wiley & Son, Inc, (1993), 436-471.

Hoigne, J., B.C. Faust, W.R. Haag, F.E. Scully, Jr., and R.G. Zepp, Aquatic humic substances as source and sinks of photochemically produced transient reactants, (Suffet, I.H., and mcCarty, P, Eds.) in Aquatic humic substances, Influence of Fate and Treatment of Pollutants, Advances in Chemistry Series, American Chemical Society, Washington, DC, (1986)

Takeda,Y., Waste water treatment by ultraviolet light irradiation, UNDP/ IAEA/ RCA regional training Course on Application of Radiation Processing for Decontamination of Liquid wastes, Takasaki radiation chemistry research Establishment Jaeri, July 10-21, (1995), 100-120.

Sopyan, I, Fotokatalisis Semikonduktor : Teori dan terapan, Majalah BPPT Teknologi, LXXXVI, (1998).

Kroschwitz, J.I., Howe-Grant, M., eds., Encyclopedia of Chemical Technology, 4th ed.,Vol.18, John Wiley & Sons, New York, (1996),p. 592-593 dan 820-834.

Ibach, H.,& Luth, H., Solid State Physics, yang dikutip oleh Ratna, Studi Degradasi fotokatalitik Fenol dengan Katalis Suspensi TiO2 terhadap Variasi Volume dan Intensitas, Skripsi Sarjana Ilmu Kimia, FMIPA, UI, (2001).

Van Vlack, L.H., alih bahasa: Striati D., Ilmu dan Teknologi Bahan. Ilmu Logam dan Bukan Logam, Edisi 5, Erlangga, Jakarta, (1992), hal.161-193.

A. Fujishima, K., Hashimoto, T., Watanabe, TiO2 Phothocatalysts Fundamental and Applications, BKC, Inc., Japan, (1999).

Linsebigler, A.L, L Guangquan, and J.T. Yates. Jr. Photocatalysis on TiO2 surfaces : Principles, Mechanism, and Selected Result, Chem. Rev, 95, (1995), 735-758.

E. Pramauro, A.B. Prevot, M. Vincenti, G. Brizzolesi, Photocatalytic Oxidation Degradation of 4-Cholophenol in aerated Aqueus Solutions Containing TiO2 Suspension, Environ. Sci. Technol. 31, (1997), 3126-3131.

Miyata, T., Radiation chemistry of water systems, UNDP/ IAEA/ RCA regional Training Course on Application of Radiation Processing for Decontamination of Liquid wastes, Takasaki Radiation Chemistry Research Establishment Jaeri ,July 10-21, (1995), 70-76.

Hoffmann, M.R., S.T.Martin, W. Choi, and D.W. Bahnemann, Environmental Application of semiconductor photocatalysis, Chem. Rev., 95, (1995), 69-96.

Lizhong, S.,& Bolton, R., Determination of The Quantum Yield for The Photochemical Generation of Hydroxyl Radicals in TiO2 Suspension, J.Phys.Chem, 100, (1996), 4127-4134.

Serpone, N., Sauve, G., Koch, R., Tahiri, H., Pichat, P., Piccini, P., Pelizzeti, E., & Hadika, H., Standardization Protocol of Process Efficiencies and Activation Parameters in Heterogeneous Photocatalysis: Relative Photonic Efficiencies, J. Photochem. Photobiol. A: Chemistry, 94, (1996), 191-203.

Serpone, N., Relative Photonic Efficiencies and Quantum Yields in The Heterogeneous Photocatalysis J. Photochem. Photobiol. A: Chemistry, 104, (1997), 1-12.

Hedi Surahman, M. Nurdin, Yuni. K. Krisnandi, dan J. Gunlazuardi, Preparasi dan aktivitas Fotokatalitik Lapisan Tipis TiO2 yang Diimobilisasi pada Bagian Dalam Tabung Gelas Dengan Metode Sol-gel, Seminar nasional MKICS, UI, (2006), 128-133.

Triandi, T.R., & Gunlazuardi, J., Preparasi Lapisan Tipis TiO2 sebagai Fotokatalisis:Karakterisasi antara Ketebalan dan Aktivitas Fotokatalisis, Makara, 5, (2001), 81-91.

Mills, A. & Richard D., The Photomineralisation of reaktive Black 5 Sensitized by Titanium Dioxide: A study of the Initial Kinetics of Dye Photobleaching, Photocatalytic Purification and treatment Water and Air, editor: D.F.Ollis & Al-Ekabi, (1993), 595-600.

Subramanian, V., Prashant. V. K., & Eduardo E.W., Mass-Transfer and Kinetic Studies during the Photocatalytic Degradation of Azo Dye on Optically Transparent Elektrode Thin Film, Ind. Chem. Res.,42, (2003), 2131-2138.

Al-Ekabi, H. & Serpone N., Kinetic studies in Heterogeneous Photocatalysis 1. Photocatalytic Degradation of Chlorinated phenols in Aerated Aqueous Solution over TiO2 Suppoerted on a Glass Matrix, J. Phys. Chem., 92, (1988), 5726-5731.

Tanaka , K., Kanjana P., & Teruaki H., Photocatalytic Degradation of Comercial Azo Dyes, Wat. Res, Vol. 34, No.1, (2000), 327-333. 4

Spadaro, J.T., Hidroxyl Radical Mediated Degradation of Azo Dye: Evidence for Benzen Generation, Environmental Sci. And Technology, 28, (1994), 1389-1393.

Downloads

Published

2024-06-30

How to Cite

Najib Nafis, Hilda Sartika, & Mutia Rahmi. (2024). Photocatalytic Degradation of Congo Red with Sol-Gel Immobilized TiO₂ Thin Layers on the Inner Surface of a Glass Tube Column . Chemistry Journal (CJ), 1(1), 01–25. https://doi.org/10.70076/cj.v1i1.29